Plant virus directed fabrication of nanoscale materials and devices.
نویسندگان
چکیده
Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to "farm" such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.
منابع مشابه
Utilisation of plant viruses in bionanotechnology.
Bionanoscience/technology sits at the interface of chemistry, biology, physics, materials science, engineering and medicine and involves the exploitation of biomaterials, devices or methodologies on the nanoscale. One sub-field of bionanoscience/technology is concerned with the exploitation of biomaterials in the fabrication of new nano-materials and/or -devices. In this Perspective we describe...
متن کاملVirus templated metallic nanoparticles.
Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subseq...
متن کاملFabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography
Line edge roughness is an important factor contributing to the problem of performance degradation in various nanoscale devices. We have developed two smoothing techniques based on nanoimprint lithography for the fabrication of nanoscale gratings with significantly reduced line edge roughness. Compared with other smoothing techniques reported before, our methods are low-cost, effective, and easy...
متن کاملNanopatterning by laser interference lithography: applications to optical devices.
A systematic review, covering fabrication of nanoscale patterns by laser interference lithography (LIL) and their applications for optical devices is provided. LIL is a patterning method. It is a simple, quick process over a large area without using a mask. LIL is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in ...
متن کاملIntegration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications
A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 479-480 شماره
صفحات -
تاریخ انتشار 2015